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Ashcroft’s empty core local model of pseudopotentials in the second-order
perturbation theory is used to study the electron dispersion relation, the Fermi
energy and deviation in the Fermi energy from free-electron values for the liquid
alkali metals. The influence of the six different forms of the local-field correction
functions proposed by Hartree, Vashishta–Singwi, Taylor, Ichimaru–Utsumi,
Farid et al. and Sarkar et al. on the aforesaid electronic properties is examined
explicitly, which reflects the varying effects of screening. The depth of the negative
hump in the electron dispersion of liquid alkalis decreases in the order Li!K;
except for Rb and Cs, where it increases.

Keywords: pseudopotential; fermi energy; electron dispersion curves; local-field
correction functions; alkali metals

1. Introduction

During the last few years there has been an increasing interest in the properties of
non-crystalline conductors such as liquid metals and liquid metallic alloys. Such a liquid
exhibits metallic as well as fluid-like behaviour, and hence can help to make a link between
the theory of the liquid states and the theory of the electronic states in metals. Thus the
study of the electronic properties of liquid metals and their alloys remains one of the
favourite research areas, either experimentally or theoretically [1–5]. The pseudopotential-
based investigation of the Fermi surface and its distortion from free-electron value for the
metals in the solid phase are quite often well recognised. Very recently, we have also
reported successfully the Fermi surface distortion (FSD) and Fermi energy (FE) of solid
solutions [6,7]. However, the attempts of studying the FE and its deviation from the
free-electron value for liquid metals are very rare [8–10].

Therefore, in the present article, an interesting task is taken up: to investigate electron
dispersion relation, FE and deviation in the FE from the free-electron value for liquid
alkali metals, based on the well-known empty core model (EMC) potential of Ashcroft
[11]. In the present work, the theoretical structure factors are computed from the well-
known Percus–Yevick (PY) hard sphere model with proper packing density [12]. The
influence of the six different forms of the local-field correction functions proposed by
Hartree (H) [13], Vashishta–Singwi (VS) [14], Taylor (T) [15], Ichimaru–Utsumi (IU) [16],
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Farid et al. (F) [17] and Sarkar et al. (S) [18] on the aforesaid electronic properties is

examined explicitly, which reflects the varying effects of screening.

2. Computational methodology

The electronic structure of liquid metals using the pseudopotential theory and second-

order perturbation theory is given as [8–10]:

EðkÞ ¼ E0ðkÞ þ E1ðkÞ þ E2ðkÞ, ð1Þ

where

E0ðkÞ ¼
�h2k2

2m
, ð2Þ

E1ðkÞ ¼ N kh jwðqÞ kj i, ð3Þ

and

E2ðkÞ ¼
2m

�h2

X
q

SðqÞS�ðqÞ WðqÞ
�� ��2

k2 � kþ q
�� ��2 : ð4Þ

Using the liquid structure factor aðqÞ ¼ NjSðqÞj2, we write Equation (1) as:

EðkÞ ¼
�h2k2

2m
þ
2m

�h2

X
q

aðqÞ WðqÞ
�� ��2

k2 � kþ q
�� ��2 � aðqÞ WðqÞ

�� ��2
q2

" #
: ð5Þ

For liquid metals, this equation is restructured as [8–10]:

EðkÞ ¼
�h2k2

2m
þ�ðkÞ ��ð0Þ, ð6Þ

�ðkÞ ¼
3Z

8kFEFk

Z 1
0

aðqÞWðqÞ2q ln
2kþ q

2k� q

����
����dq, ð7Þ

and

�ð0Þ ¼
3Z

2kFEF

Z 1
0

aðqÞWðqÞ2dq: ð8Þ

Hence the electron dispersion relation is derived as:

�EðkÞ ¼ �ðkÞ ��ð0Þ: ð9Þ

At the Fermi level, i.e. at k ¼ kF, Equations (6)–(9) are written as [8–10]:

EFðkÞjk¼kF ¼
�h2k2

2m
þ�ðkFÞjk¼kF ��ð0Þjk¼kF , ð10Þ

with

�ðkFÞjk¼kF ¼
3Z

8k2
F
EF

Z 2kF

0

aðqÞWðqÞ2 ln
2kþ q

2k� q

����
����dq, ð11Þ
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and

�ð0Þjk¼kF ¼
3Z

2kFEF

Z 2kF

0

aðqÞWðqÞ2dq: ð12Þ

Hence the deviation in the FE �EF from free-electron value at the Fermi level is

given by

�EF ¼ �ðkFÞjk¼kF ��ð0Þjk¼kF , ð13Þ

where EF, kF, Z and WðqÞ are the Fermi energy, Fermi wave vector, valence and model

pseudopotential, respectively.
In the present computation of the electronic structure of liquid alkali metals, we have

used Ashcroft’s well-known EMC model potential [11], including six different types of the

local-field correlation functions [13–18]. The form factor explored in the present

investigation is of the form [11]:

WðqÞ ¼
�4�Ze2

�Oq2"ðqÞ
cos qrCð Þ, ð14Þ

where �O is the atomic volume, rC is the parameter of the potential and "ðqÞ is the

modified Hartree dielectric function [13]. The parameter of the potential rC is determined

using the first zero of the form factor [6,7,10]. The modified Hartree dielectric function "ðqÞ
is given by [13]:

"ðqÞ ¼ 1þ "H Xð Þ � 1ð Þ 1� f Xð Þð Þ: ð15Þ

Here, "HðXÞ is the static Hartree dielectric function [13] and the expression of it is

given by:

"HðXÞ ¼ 1þ
me2

2�kF�h2�2
1� �2

2�
ln

1þ �

1� �

����
����þ 1

� �
; � ¼

q

2kF
, ð16Þ

where fðXÞ is the local-field correction function. In the present investigation, the local-field

correction functions due to Hartree (H) [13], Vashishta–Singwi (VS) [14], Taylor (T) [15],

Ichimaru–Utsumi (IU) [16], Farid et al. (F) [17] and Sarkar et al. (S) [18] are incorporated

to see the impact of exchange and correlation effects. The details of all the local-field

corrections are below.
The H-screening function [13] is purely static, and it does not include the exchange and

correlation effects. The expression of it is:

fðXÞ ¼ 0: ð17Þ

Vashishta–Singwi (VS) [14] have introduced an analytical expression for the local-field

correction function, which is written as:

fðXÞ ¼ AVS 1� exp
�BVSq

2

k2F

� �� �
: ð18Þ
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Taylor (T) [15] has introduced an analytical expression for the local-field correction

function, which satisfies the compressibility sum rule exactly. This is the most commonly

used local-field correction function and covers the overall features of the various local-field

correction functions proposed before 1972. According to him:

f Xð Þ ¼
q2

4k2F
1þ

0:1534

�k2F

� �
: ð19Þ

The Ichimaru–Utsumi (IU) local-field correction function [16] is a fitting formula for the

dielectric screening function of the degenerate electron liquids at metallic and lower

densities, which accurately reproduces the Monte-Carlo results, and also satisfies the

Table 2. Fermi energy –EF (10�12 erg) for liquid alkali metals.

Present results

Others [8,10]Metals H VS T IU F S

Li 7.1468 7.0443 6.9480 7.1023 6.9855 7.0679 6.8584, 6.9623, 7.0021, 7.0633,
7.0805, 7.0861, 7.0961, 7.0662,
7.1149, 7.2530, 7.2965,
7.3989, 7.4199

Na 4.9856 4.9709 4.9406 4.9755 4.9596 4.9724 4.6934, 4.7008, 4.7057, 4.7199,
4.7388, 4.9170, 4.9283, 4.9544,
4.9578, 5.0477, 5.0566,
5.0879, 5.0986

K 3.3725 3.3688 3.3448 3.3664 3.3610 3.3663 3.1559, 3.1701, 3.2081, 3.2184,
3.2811, 3.2922, 3.3030, 3.3105,
3.3270, 3.3306, 3.3328,
3.3404, 3.3493

Rb 2.7025 2.6250 2.5617 2.6752 2.6042 2.6503 2.7448, 2.7620, 2.7697, 2.7703,
2.7755, 2.7668, 2.7699, 2.7802,
2.7919, 2.8390, 2.8662,
2.8755, 2.9007

Cs 2.3292 2.2436 2.1800 2.3012 2.2262 2.2744 2.1582, 2.1592, 2.1783, 2.1977,
2.2119, 2.3293, 2.3354, 2.3488,
2.3559, 2.4294, 2.4396,
2.4617, 2.4724

Table 1. Input parameters and other constants.

Metals Z �O (au)3 � (au) � rC (au)

Li 1 146.46 5.0484 0.46 1.9898
Na 1 266.08 6.1601 0.46 1.8558
K 1 480.84 7.5033 0.46 2.1159
Rb 1 627.15 8.0158 0.43 2.1245
Cs 1 775.73 8.6045 0.43 2.1507
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self-consistency condition in the compressibility sum rule and short range correlations.

The fitting formula is:

f Xð Þ ¼ AIUQ
4 þ BIUQ

2 þ CIU þ AIUQ
4 þ BIU þ

8AIU

3

� �
Q2 � CIU

� �
4�Q2

4Q
ln

2þQ

2�Q

����
����

� �
:

ð20Þ

On the basis of Ichimaru–Utsumi (IU) [16] local-field correction function, Farid et al. (F)

[17] have given a local-field correction function of the form:

f Xð Þ ¼ AFQ
4 þ BFQ

2 þ CF þ AFQ
4 þDFQ

2 � CF

	 
 4�Q2

4Q
ln

2þQ

2�Q

����
����

� �
: ð21Þ

Based on Equations (20) and (21), Sarkar et al. (S) [18] have proposed a simple form of

local-field correction function, which is of the form

f Xð Þ ¼ AS 1� 1þ BSQ
4

� �
exp �CSQ

2
� � �

, ð22Þ
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Figure 1. Electron dispersion curves for liquid Li.
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where Q ¼ 2X with X ¼ q=2kF. The parameters AVS, BVS, AIU, BIU, CIU, AF, BF, CF,
DF, AS, BS and CS are the atomic volume dependent parameters of VS, IU, F and
S local-field correction functions. The mathematical expressions of these
parameters are narrated in the respective papers of the local-field correction functions
[13,16–18].

The set of Equations (6)–(13) are used for computing the electron dispersion relation,
FE, and deviation in the FE from free-electron values at the Fermi level of liquid alkali
metals. Simpson’s 1/3 method is used to evaluate numerically the integration appearing in
the Equations (7), (8), (11) and (12). The step size of the integration in each case is of the
order of 10�3kF.

3. Results and discussion

The input parameters and other constants used in the present computations are narrated in
Table 1. The input parameters are taken from [5]. The FE at the Fermi level of liquid alkali
metals is narrated in Table 2.
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Figure 2. Electron dispersion curves for liquid Na.
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From Table 2 it is noticed that the present results of the FE at the Fermi level of the
liquid metals are found in qualitative agreement with the theoretical [8,10] findings. Also,
it is noted that, among the six employed local-field correction functions, the local-field
correction function due to T gives the minimum numerical value of the FE at the Fermi
level, while the local-field correction function due to H (without exchange and correlation)
gives the maximum value. It was also concluded that among all the alkali metals, minimum
deviation in the FE at Fermi level is obtained for liquid Cs, and the maximum for liquid
Li. In comparison with the static H-function, the percentile influences of various local-field
correction functions, namely, VS, T, IU, F and S on the FE at Fermi level are found for Li,
Na, K, Rb and Cs of the order of 0.62–2.78%, 0.20–0.90%, 0.11–0.82%, 1.01–3.64% and
1.20–4.42%, respectively.

The computed results of electron dispersion relations for liquid alkali metals are shown
in Figures 1–5. From Figures 1–5, it is observed that, for all five alkali metals, the negative
hump is observed around k¼ 1.3, 1.1, 0.94, 0.77 and 0.81 Å�1 for Li, Na, K, Rb and Cs,
respectively. Also, the higher negative hump is observed for the T-function, while that
obtained for the H-function is lower. As we move from Li!Cs, the magnitude of the first
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Figure 3. Electron dispersion curves for liquid K.
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peak decreases, except those for Rb and Cs, where it increases, and the positions of this
peak also move towards the lower wave vector. The largest negative hump is observed for
the Rb element, while for K the lowest hump is observed.

Also, one can note from Figures 1–5 that, for the system of higher atomic mass and
atomic volume, the influence of the exchange and correction function is greater. The effect
of various local-field correction functions is clearly visible for higher values of wave
vectors. It is also observed that the incorporation of exchange and correlation effects via
various local-field correction functions suppresses the FE in comparison with the static
H-screening effect. The maximum influence of local-field correction is observed due to
T-screening function and minimum influence is observed for H-function. Most of the
local-field correction functions due to VS, IU, F and S are found between those of H- and
T-screening functions, as a direct comparison of the experimental properties for the liquid
alkali metals is not available in the literature. But the present results are found in a
predictive nature. The oscillatory behaviour in Figures 1–5 indicates that electron
dispersion may have an important effect on the electronic properties of liquid metals.

A good description of Cs or Rb is rather more complicated than that of the other alkali
elements. This problem stems from the fact that at pure Cs or Rb density, the
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Figure 4. Electron dispersion curves for liquid Rb.
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compressibility of the electron gas is close to zero, and is conceivably negative. Hence, the
normal pseudopotential perturbation approach based on the electron gas as the zero order
approximation is rather dubious. This is because one is starting with a thermodynamically
unstable system to provide a description of one which is thermodynamically stable. The
way out of this dilemma is to scale the electron gas density parameter, i.e. the Wigner–Seitz
radius rS, by the band structure effective mass m�, which then means that one is dealing
with an effective density for which the electron gas compressibility was large and positive.
The physical meaning of this approach is not clear, but it bears a close resemblance to the
fact that the effect of large core polarisation of Cs or Rb could be taken into account by a
suitable scaling of rS, also in the direction of large, positive compressibility [19]. But, in the
present results of the electron dispersion curves of the liquid alkali metals like Rb or Cs, we
have made straightforward computations without any assumptions or relativistic
corrections.

Here, the k-vector is good quantum value for electronic states in liquid. Since a liquid
metal is a disordered system, the corresponding eigenstates are not a combination of plane
waves. So strong an imaginary part of energy depending on the k-vector should be taken
into account. The reason behind this is the damping of electron states with any fixed
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Figure 5. Electron dispersion curves for liquid Cs.
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k-vector according to the spherical form of the Fermi surface. Also, the peak of the
structure factor aðqÞ is also affected by the damping of the electronic states of the liquid
alkali metals. Therefore, we have seen the humping nature of the electron dispersion curves
of the liquid alkali metals.

4. Conclusions

From the present study we conclude that, among all the liquid alloy metals, it was
observed that liquid Rb has the largest negative hump in the electron dispersion among all
of the alkalis. The depth of the negative hump in the electron dispersion of liquid alkalis
decreases in the order Li!K, except for Rb and Cs, where it increases. It was also
concluded that among all the liquid alkali metals, a minimum deviation in the FE at Fermi
level is obtained for liquid K and a maximum for liquid Li. The EMC model potential with
more advanced IU, F and S local-field correction functions generate consistent results
regarding the electronic properties of liquid alkalis. Hence, the EMC model potential is
found to be suitable. Also, the present investigation predicts that the present study of
electronic properties is sensitive to the selection of the proper local-field correction
function.
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